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Photoinduced radical pairs comprising a flavin radical and an A 9x 9y 9z C
oxidized amino acid residue (tyrosine or tryptophan) have recently l l l

been observed in various blue-light-sensitive proteins including the

DNA-repair enzymes (64) photolyaséand DNA photolyaséand

the cryptochromes which are involved in setting the circadian clock echo
in humans, animals, and plaftsFurthermore, a radical-pair mpiitude

mechanism involving flavin-radical intermediates has been sug-
gested® as the magnetic-field dependent process underlying
navigation of migratory birds. Strong support for flavin-radical B
intermediates has also been garnered for the primary events of blue-

light directed plant growth, chloroplast relocalization, and the

v A
opening of stomata mediated by the phototropin family of flavin T A,
chromophore photoreceptdrs® echo
Electron paramagnetic resonance (EPR) has the unique capacity ampliuds
to identify radicals in intermediate radical-pair states, as has been Byl g,
demonstrated in studies on photosynthetic reaction cehters,
provided the anisotropies and orientations of gh@atrices of the
individual radicals are known. From high-frequency/high magnetic
field EPR, such information is available for tyrosthend tryp-
tophar? radicals which are also involved in the reactions mentioned
above. However, respective information on thmatrix of flavins Byl gy

is incomplete.

In a recent study of the flavinadenine dinucleotide radical
cofactor, FADH, in Escherichia coliDNA photolyase, we have
measured the principal values of tgematrix using EPR at 360
GHz and 12.8 T8 gx = 2.00429(2),gy = 2.00359(2), and); =
2.00218(2)%314 X, Y, andZ denote the directions of the principal Boll o:
axes. For aromatic systenig,s usually aligned perpendicular to a5 138 140 142 144 146 148 150
the z-plane. As the isoalloxazine moiety in FARDHloes not
significantly deviate from planarity, th& direction ofg is well Ve / MHz
defined. However, in these experiments, the orientation ofthe  Figure 1. W-band 2-pulse electron-spirecho detected EPR spectrum of
andY axes could not be unambiguously established. FADH-* in E. coli DNA photolyase in deuterated buffer (A). #2—7—x

. N . . . . ulse sequence with 240-ng2 pulses and = 400 ns was used. (B
In this contribution, we determine the orientation of thmatrix Igymmetr?zed W-band pulsed EFIJ\IDOR spectra recorded at magnet(ic?field
of FADH* by electron-nuclear double resonance (ENDOR) at 95  values corresponding to the resonant positions of the principal components
GHz (W-band) and 3.5 T. At such high values of the microwave of the g-matrix as described in (A). The spectra were obtained using a
freauency and the magnetic field, trpanisoopy provides _ Sandard D ype ENOOR seuence i 120ulcs anda e
|mproyed EPR spectral resolutlor_l (see Figure 1A) compared to proqton E%BOR signéls using = +46° and 6 = —14° (for details, see
experiments performed at conventional 9.5 GHz (X-band) and 0.35 text and Figure 2). In (C), the variation of the simulated ENDOR spectra
mT .15 This enables one to utilize Zeeman magnetoselection to obtain for the gx orientation is shown as the angjeis changed from 42to 50°
single-crystal-like ENDOR data from disordered samples in frozen in 2° steps. All spectra have been obtained with EPR instrumentation

solution. Experiments exploiting this orientation selection have described previousi/:

allowed us to use the hyperfine coupling (hfc) of the methyl protons e 7eeman interaction, which under solid-state conditions is
H(8o) of FADH" to determine the angle between the molecular jominant at W-band. By recording ENDOR spectra at different
frame and the principal axes gf magnetic fields within the FADHEPR spectrum, hyperfine spectra

Figure 1A depicts the 2-pulse electron-specho detected 46 gptained that contain only signals arising from the subset of
W-band EPR signal of FADHf E. coli DNA photolyase recorded 5 molecules that are on resonance at the respective position in

at 80 K. The signal shape is asymmetric due to the anisotropy of e EpR spectrum. Such orientation-selective spectra in the proton-
ENDOR range are depicted in Figure 1B. In general, the ENDOR
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T Freie UniversitaBerlin. . . .
£ Technische Universitaviiinchen. spectrum for a nu_cleus n with spﬂﬁz is composed of paired
8 Present address: School of Biological Sciences, University of Exeter. transitions that, to first order, are given by = |v, &+ A/2|, where
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solution: With the principal axes system gfas the reference
coordinate frame, the angle between Xexis and the C(@&)—

C(8) bond isp = (+46 £+ 2)°, and the angle betweex and the
N(5)—H bond isé = (=14 + 2)°. It would be interesting to compare
this finding with theory; however, predictions of thgematrix
orientation of flavins using various quantum-chemical methods have
thus far yielded inconsistent resulfs.

Quite surprisingly, thg-matrix in FADH is not oriented as one
would have expected for a 1,3-semibenzoquinone ra#fi¢adr the
latter, theX-axis ofg commonly bisects the smaller angle between
the two axes along the=60 bonds. In FADH, the large spin
Figure 2. 7,8-Dimethyl isoalloxazine moiety of FADHR denotes the density on N(5) and C(4a) apparently contributes to a significant
ribityl side chain.|g| represents the angle between thecomponent of (44°) reorientation of thg-matrix principal axes. In the assumption

A(H(8a)) and theX axis ofg (giving eitherX or X"'), and|d| is the angle ; i i i in-

between the N(5)H bond and theX axis ofg (giving eitherX or X'). The thattthle sf:gn.obtalcrj]'ed lherfhls getnle(rally apglll.ciblg fgr Fro;elnﬂt\)lound
consistent geometrical solution gives the directions oXlaadY principal neutra gvm ra lcas,. en a. ing publishe a.a or-na
axes of theg-matrix with respect to the molecular plane. Th@xis ofg translocating NADH:quinone oxidoreducta$ea consistent but

is oriented perpendicular to the molecular plane of FADH slightly larger deviation (59 is obtained.
To conclude, we have for the first time precisely determined

vy is the nuclear Larmor frequency, arl is the orientation- the orientati fth trix with ‘1o th lecular f
dependent hfc constant. As the main features of the proton ENDOR € orientation of thg-matrix with respect fo the molecular frame
Pf a protein-bound flavin radical. By exploiting Zeeman magne-

spectrum have already been discussed in detail for experiments at lection at high maanetic fields on nonoriented samples. thi
9.5 GHz!> we will restrict this discussion to the prominent features _ose ec .O at hig ag e' c e .S on nonoriente _sa pes, this
information has been obtained without the use of single crystals,

arising from hfcs in the 69-MHz range of the W-band ENDOR hich iderably red h - | ff h

spectra. These have been assigned to the protons of the metthV Ich consideraply re uces t eegpenmenta effort. We expec_tt at

group at C(8) of the isoalloxazine ring. the_sg results YVI” form the foundgtlon for future analyses of radical-
Typically, methyl groups rotate freely about thei+C bond at pair intermediates in flavoproteifg.

temperatures-30 K. Hence, at 80 K, the three hfc tensors of the Acknowledgment. We thank C. Gessner for making available
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